Pages

PI Polynomial and Vertex PI Polynomialof Certain Special Molecular Graphs

Abstract:As the extension of PI index and vertex PI index, PI polynomial andvertex PIpolynomial aredistance-based topological polynomial which reflect certain structural features of organic molecules. In this paper, we determine thePI polynomial and vertex PI polynomialof fan molecular graph, wheel molecular graph, gear fan molecular graph, gear wheel molecular graph, and their r-corona molecular graphs.
Keywords:Chemical graph theory,PI polynomial,vertex PI polynomial,Fan molecular graph, Wheel molecular graph, Gear fan moleculargraph, Gear wheel moleculargraph, r-corona moleculargraph.
 
References

[1] L. Yan, Y. Li, W.Gao, J. S. Li, On the extremal hyper-wiener index of graphs, Journal of Chemical and Pharmaceutical Research, 2014, 6(3): 477-481.

[2] L. Yan, W. Gao, J. S. Li, General harmonic index and general sum connectivity index of polyomino chains and nanotubes, Journal of Computational and Theoretical Nanoscience.In press.

[3] W. Gao, L. Liang, Y.Gao. Some results on wiener related index and shultz index of molecular graphs, Energy Education Science and Technology: Part A, 2014, 32(6): 8961-8970.

[4] W. Gao, L. Liang, Y. Gao, Total eccentricity, adjacent eccentric distance sum and Gutman index of certain special molecular graphs[J], The BioTechnology: An Indian Journal, 2014, 10(9): 3837-3845.

[5] W. Gao, L. Shi, Wiener index of gear fan graph and gear wheel graph, Asian Journal of Chemistry, 2014, 26(11): 3397-3400.

[6] W. Gao, W. F. Wang, Second atom-bond connectivity index of special chemical molecular structures, Journal of Chemistry, Volume 2014, Article ID 906254, 8 pages,
http://dx.doi.org/10.1155/2014/906254.

[7] W. F. Xi, W. Gao, Geometric-arithmetic index and Zagreb indices of certain special molecular graphs, Journal of Advances in Chemistry, 2014, 10(2): 2254-2261.

[8] W. F. Xi, W. Gao,-Modified extremal hyper-Wiener index of molecular graphs, Journal of Applied Computer Science & Mathematics, 2014, 18 (8): 43-46.

[9] W. F. Xi, W. Gao, Y. Li, Three indices calculation of certain crown molecular graphs, Journal of Advances in Mathematics, 2014, 9(6): 2696-2304.

[10] Y. Gao, W. Gao, L. Liang, Revised Szeged index and revised edge Szeged index of certain special molecular graphs,. International Journal of Applied Physics and Mathematics, 2014, 4(6): 417-425.

[11] J. A. Bondy, U. S. R. Mutry. Graph Theory, Spring, Berlin, 2008.

[12] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. , 2008, 156: 1780-1789.

[13] A.R. Ashrafi, M. Ghorbani, M. Jalali, The vertex PI and Szeged indices of an infinite family of fullerenes, J. Theor. Comput. Chem., 2008, 7 (2): 221-231.

[14] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Alg. Appl., 2008, 429 (11-12):
2702-2709.

[15] H. Yousefi-Azari, A.R. Ashrafi, M.H. Khalifeh, Computing vertex-PI index of single and multi-walled nanotubes, Digest Journal of Nanomaterials and Biostructures, 2008, 3 (4): 315-318.

[16] T. Mansour, M. Schork, The vertex PI index and Szeged index of bridge graphs, Discrete Appl.
Math., 2009, 157 (7): 1600-1606.

[17] M.J. Nadjafi-Arani, G.H.Fath-Tabar, A.R. Ashrafi, Extremal graphs with respect to the vertex PI index,Applied Mathematics Letters, 2009, 22:1838-1840.

[18] K. Das, I. Gutman, Bound forvertex PI index in terms of simple graph parameters, Filomat, 2013, 27(8):1583–1587.

[19] X. Li, X.Yang, G.Wang, R. Hu, The vertex PI andSzeged indices of chain graphs, MATCH Commun. Math. Comput. Chem., 2012, 68:349-356.

[20] A. Bahrami, J. Yazdani,Vertex PI index of V-phenylenic nanotubes and nanotori, Digest Journal of Nanomaterials and Biostructures, 2009, 4(1): 141-144.
  
Download Full Paper Click here



About the Author

Yun Gao

Yun Gao1, Li Yan2, Wei Gao3

1Department of Editorial, Yunnan Normal University, Kunming 650092, China

2School of Engineer, Honghe University, Mengzi 661100, China

3School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China



Most Viewed - All Categories