PI Polynomial and Vertex PI Polynomialof Certain Special Molecular Graphs
[1] L. Yan, Y. Li, W.Gao, J. S. Li, On the extremal hyper-wiener index of graphs, Journal of Chemical and Pharmaceutical Research, 2014, 6(3): 477-481.
[2] L. Yan, W. Gao, J. S. Li, General harmonic index and general sum connectivity index of polyomino chains and nanotubes, Journal of Computational and Theoretical Nanoscience.In press.
[3] W. Gao, L. Liang, Y.Gao. Some results on wiener related index and shultz index of molecular graphs, Energy Education Science and Technology: Part A, 2014, 32(6): 8961-8970.
[4] W. Gao, L. Liang, Y. Gao, Total eccentricity, adjacent eccentric distance sum and Gutman index of certain special molecular graphs[J], The BioTechnology: An Indian Journal, 2014, 10(9): 3837-3845.
[5] W. Gao, L. Shi, Wiener index of gear fan graph and gear wheel graph, Asian Journal of Chemistry, 2014, 26(11): 3397-3400.
[6] W. Gao, W. F. Wang, Second atom-bond connectivity index of special chemical molecular structures, Journal of Chemistry, Volume 2014, Article ID 906254, 8 pages,
http://dx.doi.org/10.1155/2014/906254.
[7] W. F. Xi, W. Gao, Geometric-arithmetic index and Zagreb indices of certain special molecular graphs, Journal of Advances in Chemistry, 2014, 10(2): 2254-2261.
[8] W. F. Xi, W. Gao,-Modified extremal hyper-Wiener index of molecular graphs, Journal of Applied Computer Science & Mathematics, 2014, 18 (8): 43-46.
[9] W. F. Xi, W. Gao, Y. Li, Three indices calculation of certain crown molecular graphs, Journal of Advances in Mathematics, 2014, 9(6): 2696-2304.
[10] Y. Gao, W. Gao, L. Liang, Revised Szeged index and revised edge Szeged index of certain special molecular graphs,. International Journal of Applied Physics and Mathematics, 2014, 4(6): 417-425.
[11] J. A. Bondy, U. S. R. Mutry. Graph Theory, Spring, Berlin, 2008.
[12] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, Vertex and edge PI indices of cartesian product graphs, Discrete Appl. Math. , 2008, 156: 1780-1789.
[13] A.R. Ashrafi, M. Ghorbani, M. Jalali, The vertex PI and Szeged indices of an infinite family of fullerenes, J. Theor. Comput. Chem., 2008, 7 (2): 221-231.
[14] M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, A matrix method for computing Szeged and vertex PI indices of join and composition of graphs, Linear Alg. Appl., 2008, 429 (11-12):
2702-2709.
[15] H. Yousefi-Azari, A.R. Ashrafi, M.H. Khalifeh, Computing vertex-PI index of single and multi-walled nanotubes, Digest Journal of Nanomaterials and Biostructures, 2008, 3 (4): 315-318.
[16] T. Mansour, M. Schork, The vertex PI index and Szeged index of bridge graphs, Discrete Appl.
Math., 2009, 157 (7): 1600-1606.
[17] M.J. Nadjafi-Arani, G.H.Fath-Tabar, A.R. Ashrafi, Extremal graphs with respect to the vertex PI index,Applied Mathematics Letters, 2009, 22:1838-1840.
[18] K. Das, I. Gutman, Bound forvertex PI index in terms of simple graph parameters, Filomat, 2013, 27(8):1583–1587.
[19] X. Li, X.Yang, G.Wang, R. Hu, The vertex PI andSzeged indices of chain graphs, MATCH Commun. Math. Comput. Chem., 2012, 68:349-356.
[20] A. Bahrami, J. Yazdani,Vertex PI index of V-phenylenic nanotubes and nanotori, Digest Journal of Nanomaterials and Biostructures, 2009, 4(1): 141-144.About the Author
Yun Gao Yun Gao^{1}, Li Yan^{2}, Wei Gao^{3} ^{1}Department of Editorial, Yunnan Normal University, Kunming 650092, China ^{2}School of Engineer, Honghe University, Mengzi 661100, China ^{3}School of Information Science and Technology, Yunnan Normal University, Kunming 650500, China |