Pages

Zagreb indices and polynomials of TUHRC4(S) and TUSC4C8(S) Nanotubes

ABSTRAACT

 Let G=(E,V) be a simple connected graph with the vertex set V(G) and the edge set E(G). In this paper, we present an exact formula for the Zagreb indices and polynomials of G=TUHRC4(S) and H=TUSC4C8(S) Nanotubes.

Keywords: Topological indices; Graph polynomials; Zagreb indices; Nanotubes.

 REFRENANCES

[1]        N. Trinajstić. Chemical Graph Theory. CRC Press, Bo ca Raton, FL. (1992).

[2]        R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Wiley, Weinheim. (2000).

[3]        M.V. Diudea, (Ed.), QSPR/QSAR Studies by Molecular Descriptors, NOVA, New York, 2001.

[4]        M.V. Diudea, I. Gutman and L. Jäntschi, Molecular Topology, NOVA, New York, 2002.

[5]        M.V. Diudea, M.S. Florescu and P.V. Khadikar, Molecular Topology and Its Applications, EFICON, Bucharest, 2006.

[6]        I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. III. Total π-electron energy of alternant hydrocarbons. Chem. Phys. Lett. 17, 535–538 (1972).

[7]        I. Gutman, B. Ruščić, N. Trinajstić, C.F. Wilcox Jr., Graph theory and molecular orbitals. XII. Acyclic polyenes, J. Chem. Phys. 62 (1975) 3399-3405.

[8]        A. Ilić, D. Stevanović, On comparing Zagreb indices, MATCH Commun. Math. Comput. Chem. 62 (2009) 681-687.

[9]        A. AstanehAsl and G.H. FathTabar, Computing the first and third Zagreb polynomials of Cartesian product of graphs, Iranian J. Math. Chem. (2011), 2(2), 73-78.

[10]     B. Bollobás, P. Erdös, Graphs of extremal weights. Ars Combin. 50, 225-233 (1998).

[11]     J. Braun, A. Kerber, M. Meringer, C. Rucker, Similarity of molecular descriptors: the equivalence of Zagreb indices and walk counts, MATCH Commun. Math. Comput. Chem. 54 (2005) 163-176.

[12]     K.C. Das, I. Gutman, Some properties of the second Zagreb index. MATCH Commun. Math. Comput. Chem. 52, 103-112 (2004).

[13]     T. Došlić, On Discriminativity of Zagreb Indices, Iranian J. Math. Chem. (2012), 3(1), 25-34.

[14]     M. Eliasi, A. Iranmanesh, I. Gutman. Multiplicative Versions of First Zagreb Index. MATCH Commun. Math. Comput. Chem. 68 (2012)) 217-230.

[15]     M.R. Farahani. Some Connectivity Indices and Zagreb Index of Polyhex Nanotubes. Acta Chim. Slov. 59, 779-783 (2012).

[16]     M.R. Farahani. Zagreb index, Zagreb Polynomial of Circumcoronene Series of Benzenoid. Advances in Materials and Corrosion. 2, (2013), 16-19.

[17]     M.R. Farahani and M.P.Vlad. Computing First and Second Zagreb index, First and Second Zagreb Polynomial of Capra-designed planar benzenoid series Can(C6). Studia Universitatis Babes-Bolyai Chemia. 58(2), (2013), 133-142.

[18]     M.R. Farahani. The First And Second Zagreb Indices, First And Second Zagreb Polynomials Of HAC5C6C7[p,q]
And HAC5C7[p,q] Nanotubes. Int. J. Nanosci. Nanotechnol. 8(3), Sep. (2012), 175-180.

[19]     M.R. Farahani. First and Second Zagreb polynomials of VC5C7[p,q] and HC5C7[p,q] nanotubes. Int. Letters of Chemistry, Physics and Astronomy. 12, (2014), 56-62.

[20]     M.R. Farahani. Zagreb Indices and Zagreb Polynomials of Pent-Heptagon Nanotube VAC5C7(S) Chemical Physics Research Journal. 6(1), (2013), 35-40.

[21]     M.R. Farahani. Zagreb Indices and Zagreb Polynomials of Polycyclic Aromatic Hydrocarbons PAHs. Journal of Chemica Acta. 2, (2013), 70-72.

[22]     M.R. Farahani, Some Connectivity index of an infinite class of Dendrimer Nanostars. Romanian Academy Seri B. 15(3), (2014). In press.

[23]     I. Gutman and M. Ghorbani, Some properties of the Narumi-Katayama index, Appl. Math. Lett. (2012), 25, 1435-1438.

[24]     I. Gutman, K.C. Das, The first Zagreb index 30 years after. MATCH Commun. Math. Comput. Chem. 50, 83-92 (2004).

[25]     M. Ghorbani, M. Songhori and I. Gutman, Modified Narumi-Katayama index, Kragujevac J. Sci. (2012), 34, 57-64.

[26]     D. Janežič, A. Miličević, S. Nikolić, N. Trinajstić, D. Vukičević, Zagreb indices: extension to weighted graphs representing molecules containing heteroatoms. Croat. Chem. Acta 80, 541-545 (2007).

[27]     S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after. Croat. Chem. Acta 76, 113-124 (2003).

[28]     D. Vukičević, S.M. Rajtmajer, N. Trinajstić, Trees with maximal second Zagreb index and prescribed number of vertices of the given degree. MATCH Commun. Math. Comput. Chem. 60, 65-70 (2008).

[29]     D. Vukičević, S. Nikolić, N. Trinajstić, On the path-Zagrebmatrix. J.Math. Chem. 45, 538-543 (2009).

[30]     D. Vukičević, N. Trinajstić, On the discriminatory power of the Zagreb indices for molecular graphs. MATCH Commun. Math. Comput. Chem. 53, 111-138 (2005).

[31]     K. Xu, K.Ch. Das. Trees, Unicyclic, and Bicyclic Graphs Extremal with Respect to Multiplicative Sum Zagreb Index. MATCH Commun. Math. Comput. Chem. 68 (2012)) 257-272.

[32]     B. Zhou, Zagreb indices. MATCH Commun. Math. Comput. Chem. 52, 113-118 (2004).

[33]     B. Zhou, I. Gutman, Further properties of Zagreb indices. MATCH Commun. Math. Comput. Chem. 54, 233-239 (2005).

[34]     B. Zhou and N. Trinajstić. Some properties of the reformulated Zagreb indices. J. Math. Chem. 48, (2010), 714-719.

[35]     B. Zhou, D. Stevanović, A note on Zagreb indices.MATCH Commun. Math. Comput. Chem. 56, 571-578 (2006).

[36]     B. Zhou, Upper bounds for the Zagreb indices and the spectral radius of series-parallel graphs. Int. J. Quantum Chem. 107, 875-878 (2007)

[37]     B. Zhou, Remarks on Zagreb indices. MATCH Commun. Math. Comput. Chem. 57, 591-596 (2007).

[38]     H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947), 17–20.

[39]     A.A. Dobrynin, R. Entringer, I. Gutman, Wiener index of trees: theory and applications, Acta Appl. Math. 66 (2001) 211-249.

[40]     M. Randić, Novel molecular descriptor for structure-property studies. Chem. Phys. Lett., 211,(1993),478.

[41]      I. Gutman, A property of the Wiener number and its modifications, Indian J. Chem. 36A (1997) 128-132.

[42]     M. Eliasi, B. Taeri, Extension of the Wiener index and Wiener polynomial, Appl. Math. Lett. 21 (2008) 916-921.

[43]     A. Behtoei, M. Jannesari, B. Taeri, Maximum Zagreb index, minimum hyper-Wiener index and graph connectivity, Appl. Math. Lett. 22 (2009), 1576-1571.

[44]     S. Li, H. Zhou, On the maximum and minimum Zagreb indices of graphs with connectivity at most k, Appl. Math. Lett. 22 (2010) 128-132.

[45]     B. Zhou, I. Gutman, Relations between Wiener, hyper-Wiener and Zagreb indices, Chem. Phys. Lett. 394 (2004) 93-95.

[46]     K.C. Das, I. Gutman, B. Zhou, New upper bounds on Zagreb indices, J. Math. Chem. 46 (2009) 514-521.

[47]     M. Arezoomand. Energy and Laplacian Spectrum of C4C8(S) Nanotori and Nanotube. Digest. J. Nanomater. Bios. 4(6), (2009), 899-905.

[48]     J. Asadpour, R. Mojarad and L. Safikhani. Computing some topological indices of nano structure. Digest. J. Nanomater. Bios. 6(3), (2011), 937-941.

[49]     A.R. Ashrafi and S. Yousefi. An Algebraic Method Computing Szeged index of TUC4C8(R) Nanotori. Digest. J. Nanomater. Bios. 4(3), (2009), 407-410.

[50]     A.R. Ashrafi, M. Faghani and S. M. SeyedAliakbar. Some Upper Bounds for the Energy of TUC4C8(S) Nanotori. Digest. J. Nanomater. Bios. 4(1), (2009), 59-64.

[51]     A.R. Ashrafi and H. Shabani. The Hosoya Polynomial of TUC4C8(S) Nanotubes. Digest. J. Nanomater. Bios. 4(3), (2009), 453-457.

[52]     M.V. Diudea, Nanoporous Carbon Allotropes by Septupling Map Operations, J. Chem. Inf. Model, 45, (2005), 1002-1009.

[53]     M.R. Farahani, Computing some connectivity indices of Nanotubes. Adv. Mater. Corrosion. 1, (2012),
57-60.

[54]     M.R. Farahani, New Version of Atom-Bond Connectivity Index of TURC4C8(S) Nanotubes. Int. Journal of Chemical Modeling (Nova). 4(4), (2012), 527-521.

[55]     M.R. Farahani, Fifth Geometric-Arithmetic Index of TURC4C8(S) Nanotubes. Journal of Chemica Acta. 2(1), (2013), 62-64.

[56]     M.R. Farahani. Domination polynomial of Nanotorus by using the 2-variables Generating Function. Pacific Journal of Applied Mathematics. 6(1), 2014, 79-95.

[57]    A. Heydari. On The Modified Schultz Index of C4C8(S) Nanotori and Nanotube. Digest. J. Nanomater. Bios. 5(1), (2010),
51-56.

 

Click here to Download Full Article




About the Author

Mohammad Reza Farahani

1 Department of Applied Mathematics of Iran University of Science and Technology (IUST),

 Narmak, Tehran 16844, Iran.

Corresponding author: MrFarahani88@Gmail.com, Mr_Farahani@Mathdep.iust.ac.ir


Most Viewed - All Categories