Two Types of Connectivity indices of a Benzenoid System

Abstract --

Let G=(V,E) be a simple connected graph with vertex and edge sets V(G) and E(G), respectively. In chemical graph theory, the vertices of G correspond to the atoms and the edges of G correspond to the chemical bonds.

In this paper, we focus on the structure of a type of Benzenoid Systems “jagged-rectangle Bm,n ("m,nÎ-{1}) and compute two types of Randić and Sum-Connectivity indices of it.

Indexing Terms/Keywords -- Molecular graph; Benzenoid Systems, jagged-rectangle, Randić Connectivity Index; Sum-Connectivity Index.

References --

[1]     D.B. West. An Introduction to Graph Theory. Prentice-Hall. 1996.

[2]     N. Trinajstić, Chemical Graph Theory, CRC Press, Boca Raton, FL, 1992.

[3]     R. Todeschini and V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000.

[4]     H. Wiener, Structural Determination of Paraffin Boiling Points. J. Am. Chem. Soc. 69, 17. (1947).

[5]     M. Randić, On the characterization of molecular branching. J. Amer. Chem. Soc. 97, 6609-6615, (1975).

[6]     D.A. Klarner. Polyominoes, In: J. E. Goodman, J. ORourke, (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Bo ca Raton. Chapter 12, 225-242. (1997).

[7]     N. Trinajstić. Chemical Graph Theory. CRC Press, Bo ca Raton, FL. (1992).

[8]     P. Yu, An upper bound on the Randić of tree, J. Math. Study (Chinese). 31, 225. (1998).

[9]     M. Ghorbani and M. Ghazi. Computing Some Topological Indices of Triangular Benzenoid. Digest. J. Nanomater. Bios. 5(4), (2010), 1107-1111.

[10] 3. B. Zhou and N. Trinajstić, On a novel connectivity index, J. Math. Chem. 46, (2009), 1252-1270.

[11] 4. B. Zhou and N. Trinajstić, On general sum-connectivity index, J. Math. Chem. 47, (2010), 210-218.

[12] S. Ling-Ling, W. Zhi-Ning and Z. Li-Qiang, Chinese Journal of Chemistry, 23(3), 2005, 245-250.

[13] Z. Bagheri, A. Mahmiani and O. Khormali. Iranian Journal of Mathematical Sciences and Informatics. 3(1), 2008 31-39.

[14] M.R. Farahani and M.P. Vlad. Omega Polynomial and Omega Index of a Benzenoid System. Studia UBB, Chemia LIX, 2, 2014, 71-78.

[15] M.R. Farahani. Counting Polynomials of Benzenoid Systems. Int. J. New Innovation in Science and Technology, 3(1), 2014, 14-19.

[16] M.R. Farahani. Sadhana Polynomial and its Index of Hexagonal System Ba,b. Int. J. Computational and Theoretical Chemistry. 1(2), 2013, 7-10.

[17] M.R. Farahani. On Atom Bond Connectivity and Geometric-Arithmetic indices of a Benzenoid System. Int. J. Engineering and Technology Research. 3(2), 2015, 1-4.

[18] M.R. Farahani. Some Connectivity Indices and Zagreb Index. of Polyhex Nanotubes. Acta Chim. Slov. 59, 779–783 (2012).


Click Here To Download Full Article

About the Author

Mohammad Reza Farahani

Department of Applied Mathematics, Iran University of Science and Technology (IUST), Narmak, Tehran, 16844, Iran &

Most Viewed - All Categories