Pages

AN EXISTENCE RESULT VIA GAUSSIAN ESTIMATES FOR A TWO-BAND KANE HAMILTONIAN SYSTEM

Abstract -- In this paper we prove a theorem of existence of a " good " solution
of a quantum model for a two-band Kane Hamiltonian system at the termal
equilibrium.

References -- [1] M. A. Al-Gwaiz, Theory of distributions, Marcel Dekker, Inc. New York - Basel - Hong Kong,
1992
[2] W. Arendt, Heat Kernels, https://tulka.mathematik.uni-ulm.de/index.php/Lectures
[3] W. Arendt, Vector valued Laplace transforms and Cauchy problems, Israel J. Math., 59
(1987), 327-352
[4] W. Arendt, F. Neubrander, U. Schlotterbeck, Interpolation of semigroups and integrated
semigroups, Semigroup Forum, 45 (1992), 26-37
[5] W. Arendt, El-M. Ouhabaz, V. Keyantuo, Local Integrated Semigroups: Evolution with
Jumps of Regularity, J. Math. Anal. Appl., 186 (1994), 572-595
[6] W. Arendt, A. F. M. Ter Elst, Gaussian estimates for second order elliptic operators with
boundary conditions, J. Op. Theory, 38 (1997), 87-130
[7] W. Arendt, Semigroup properties by Gaussian estimates, RIMS Kokyuroku, 1009 (1997),
162-180
[8] W. Arendt, C. J. K. Batty, M. Hieber and F. Neubrander, Vector-valued Laplace Transforms
and Cauchy Problems, Birkhäuser Verlag, Basel-Boston-Berlin, 2001
[9] A. Arnold, H. Steinrück, The ’electromagnetic’ Wigner equation for an electron with spin, Z.
Angew. Math. Phys., 40 (6), (1989), 793-815
[10] P. Auscher, L. Barthélemy, P. Bénilan, El-M. Ouhabaz, Absence de la L∞-contractivité pour
les semi-groups associés aux opérateurs elliptique complexes sous forme divergence, Potential
Anal., 12, No 2, (2000), 169-189
[11] M. Balabane, H. A. Emamirad, Lp estimates for Schrödinger evolution equation, Trans.
Amer. Math. Soc., 291 (1985), 357-373
[12] L. Barletti, A. Bertoni, P. Bordone, L. Demeio, C. Jacoboni, Wigner-function approach to
multiband transport in semiconductors, Physica B 314, (2002), 104-107
[13] L. Barletti, On the thermal equilibrium of a quantum system descrbed by a two-band Kane
Hamiltonian, Il nuovo cimento 119 B, 12 (2004), 1125-1140

 

 

Click here to Download Full Article




About the Author

Tiziano Granucci 

Istituto Statale Gobetti - Volta, Via Roma 77, Bagnoa Ripoli,

Italy

tizianogranucci@libero.it


Most Viewed - All Categories