# ON G2-PARACONTACT SUBMERSIONS

**Abstract** --

A G2−paracontact submersion is a semi-Riemannian submersion

whose total space is endowed with a G2-almost paracontact

structure. In this paper, the case of a G2−para-Sasakian and a G2−para-

Kenmotsu manifolds are more specifically considered. The study focuses

on the geometry of the fibres in case the superminimality property

of the latter is used to determine the structure of the total space from that

of the base space. We show that this result only agrees with G2−para-

Sasakian submersions but does not agree with G2−para-Kenmotsu.

**References** --

[1] A.M. Blaga, -Ricci solitons on para-Kenmotsu manifolds, arXiv:1402.0223

v1[math.DG] 2 Feb.2014.

[2] D. Chinea, Almost contact metric submersions and structure equations, Publicationes

Mathematicae, Debrecen, 34 (1987), 207-213.

[3] P. Dacko, On almost para-cosymplectic manifolds, Tsukuba J. Math., 28

(2004),193-213.

[4] P. Dacko, and Z. Olszak, On weakly para-cosymplectic manifolds of dimension

3, J. Geom. Physics, 57 (2007),561-570.

[5] A. Gray, and L.M., Hervella, The sixteen classes of almost Hermitian manifolds

and their linear invariants, Ann. Mat. Pura Appl., 123 (1980), 35-58.

[6] Y. Gunduzalp, and B. Sahin, Paracontact semi-Riemannian submersions, Turkish

J. Math., 37 (2013), 114-128.

[7] S. Kaneyuki, and F.L. Williams, Almost paracontact and paraHodge structures

on manifolds, Nagoya Math. J., 99 (1985),173-187.

[8] B. O’Neill, The fundamental equations of a submersion, Michigan Math.J., 13

(1966), 459-469.

[9] I. Sato, On a structure similar to the almost contact structure I, Tensor, N.S., 30

(1976),219-224.

[10] I. Sato, On a structure similar to the almost contact structure II, Tensor, N.S., 31

(1977),199-205.

[11] S.S. Shukla, and U. SHANKAR VERNA, Paracomplex Paracontact Pseudo-

Riemannian Submersions, Hindawi Publ. Corporation Geometry, Vol. 2014, Article

ID 616487.

[12] T. Tshikuna-Matamba, Superminimal fibres in an almost contact metric submersion,

Iranian J. Math. Sci. Info., 3 (2) (2008),77-88.

[13] T. Tshikuna-Matamba, Almost contact metric submersions in Kenmotsu geometry,

J. Math. Tokushima Univ. 48 (2014),1-16.

[14] T. Tshikuna-Matamba, On the fibres of an almost paracontact metric submersion,

J. Math. Tokushima Univ. 50 (2016),1-13.

[15] T. Tshikuna-Matamba, On the base space of an almost paracontact submersion,

Facta Universitatis (Nis), Ser. Math. Inform., 31 (5) (2016),1041-1049.

[16] T. Tshikuna-Matamba, Some properties of G1-paracontact submersions, Global

Journal of Mathematics, 9 (2) (2017),585-594.

[17] B. Watson, The differential geometry of two types of almost contact metric

submersions, in The Math. Heritage of C.F. Gauss, (Ed. G.M. Rassias), World

Sci. Publ. Co. Singapore, 1991, pp. 827-861.

14 T.TSHIKUNA-MATAMBA

[18] B. Watson, Superminimal fibres in an almost Hermitian submersion, Boll. Un.

Mat. Ital., (8)I-B (2000),159-172.

[19] S. Zamkovoy, Cannonical connections on paracontact manifolds, Ann. Global

Anal. Geometry, 36 (2009),37-60.

**Click here to Download Full Article**

## About the Author

T. TSHIKUNA-MATAMBA
DEPARTEMENT DE MATHEMATIQUES |